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ABSTRACT $7954 
Digital data processing necessarily involves quantiza- 
tion (roundofl) of input duta. The statistical theory of 
amplitude quantization indicates that the effects of 
quantization on statistics are often negligible or can 
be approximately predicted and corrected, even with 
surprisingly coarse quantizution. This tutorial paper 
revietrs contributions to  the theory made in England, 
the Netherlands, and Russia, as we11 C I S  B. Widrow’s 
original work in this country. Applications IO rrriicirk- 
ably inexpnsive hybrid analog-digital averaging com- 
puters and correlators ure also discussed. The theory 
can pay very handsome practical dividends: in muny 
applicntions, 2- to 4-bit analog-to-digital converters 
and data-transmission channels can yield averages, 
mean squares, und correlation functions with 10- to 
20-bit accuracy, and one-bit (polarity-coincidence) 
correlutors are often practical. 

STATISTICAL EFFECTS OF QUANTIZATION 
1 .  Introduction. 

Digital data processing necessarily involves quanti- 
zation (roundoff, grouping) of input data samples. The 
range of each random variable, say x ,  is subdivided 
into class intervals 

AX Ax 
2 2 iAx--<x< iAx+- ( i=0,=1,*2;- . )  

of equal width Ax. The quantization operation replaces 
each value of x by the nearest class-interval center iAx 
(Figure la). The quantizer output xQ can be regarded 
as the sum of the input x and a roundoff error 

nQ=xQ-x (1) 

nQ = nQ( t )  is referred to as quantization noise, although 
the “noise” nQ is definitely (not just stochastically) 
determined if x is known (Figure 1 b). If statistics, such 
as averages or correlation estimates, are computed 
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Figure 1 -Demonstration of amplitude quantization (a) 
and quantizer input, output, and 

quantization noise for sinusoidal input (b). 



from quantized data, the roundoff will increase esti- 
mate variances and may also affect (bias) the mean of 
the estimate. For an important class of random proc- 
esses, however, theoretical study yields the highly 
practical result that the biasing efects  of quantization 
average out approximately or can be approximately 
predicted and corrected, even with surprisingly coarse 
quantization. A quantitative hold on this phenomenon 
will permit us to realize the most remarkable savings 
in analog-to-digital conversion and digital data trans- 
mission and storage. Computation of 13-bit estimates 
of mean values, mean squares, and correlation func- 
tions will rarely require conversion, transmission, 
and/or storage of over eight bits, and four bits or less 
is often sufficient. Digital computation of 13-bit esti- 
mates will then require 13-bit output, but at most 8-bit 
inputs. 

The statistical theory of amplitude quantization, due 
essentially to B. Widrow,',16t018 will be reviewed in 
sections 8 to 12. We will, however, begin by simply 
stating the principal results (sections 3 and 4) and then 
demonstrate their practical application (sections 5 to 7) 
before we present any theoretical derivation. 

2.  Characteristic Functions. 
For all random variables u, v (continuous, discrete,or 

otherwise), we can introduce characteristic functions 

xu(q) = E{ejq"} xu.u(ql, q 2 )  = E{ej(qIU+q~U)} (2 )  

Each characteristic function uniquely defines the cor- 
responding probability distribution? Series expansion 
of the exponential yields 

I 
2 xu(q)= l+jqE{u}--qZE{u2}+~ 

1 
2 

xu.u(ql, q ~ )  = 1 + j q l E { u } + j q r E { v } - - q ~ E { u ~ }  (3) 
1 
2 --q$F{v2} -qlq2E{uV)+"* 

for all real q ,  ql, q2 whenever the expected values 
(moments) on the right exist. It follows that ~ ~ ( 0 )  = 
xu,,(o, 0) = 1, and 

If u and v are statistically independent random vari- 
ables, then 

xu. u ( q 1 1  Ys) = x u  (41 )XV (42) 

x u + u ( q )  =xu(4)x.(4) 

Conversely, the first relation implies statistical inde- 
pendence, but the second one does not necessarily 
do so. 

* 
3.  The Quantizing Theorems and Sheppards 
Corrections. 

We now state the principal results of the statistical 
theory of amplitude quantization,', l6t018 reserving the 
proofs for sections 8 and 9. 
a. If the probability density p ( x )  of our input x is 

"band-limited" so that its characteristic function 
xt(q) E{eJq"} vanishes for 141 2771Ax-E ( E  > 0 ) ,  
then every existing mean value (moment) E{x"} 
( m  = 1,2,  - 0 . )  is completely determined by moments 
of the quantizer OutputxQ, and the first-order proba- 
bility distribution of the quantization noise nQ is 
uniform between -Ax12 and Ax12. 

b. If the joint probability density p ( x ,  y )  of two input 
variables x ,  y is "band-limited" so that the joint 
characteristic function ~ ~ , ~ ( q ~ ,  q2) E{eJ(Q1"+q2g)} 
is zero for lql 1 5 2rlAx - E ,  q2 5 2rlAy - E ( E  > 0) , 
then every existing moment E{xmy"} ( m ,  n = 1, 2, 
e - . )  is completely determined by joint moments of 
the quantizer outputs XQ, y e ,  and quantization noise 
samples nQz = xQ - x ,  nBu = yQ - y are uniformly dis- 
tributed and statistically independent. 

More specifically, we shall prove in section 9 that 
the conditions of theorem 1 imply 

E { x }  
1 E { x ~ } = E { x ~ }  - f i ( A ~ ) '  

E{X"}=E{X4,} -~(Ax)'E{x'U}+ 0 [ ( A X ) ' ]  
(6) 1 

and hence 
1 Var{xQ} = Var{x} +fi ( A x ) 2  

(7) 
Var{x',}= Var{x2} +f (Ax)'E(x2}+O 

whenever the expected values in question exist. 
Relations of this type have been known for many 
years as Sheppards corrections for grouped data? 
Widrow's theory furnishes a more general and rig- 
orous justification for these formulas. 

Similarly, the conditions of theorem 2 imply 

and hence, if we letx=x(t ,)  andy=x(t,) ory(t,), 

E { x y }  = E { X Q Y Q }  ( x  Y )  (8) 

Rz,  ( t l ,  t 2 )  = RSQgQ ( r l ,  t 2 )  ( X + Y )  (10) 
Finally, 

c .  If the probability distribution of x is "band-limited'' 
so that xr (4) = 0 for 141 2 771 Ax, then the probabil- 
ity distribution of x is completely determined by 
that of the quantizer output X Q .  An analogous the- 
orem holds for the joint distribution of two quantizer 
inputs (section 9). 
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. ‘ HYBRID ANALOG-DIGITAL 
MEASUREMENTS EMPLOYING 

COARSE QUANTIZATION 
4 .  Gaussian or Approximately Gaussian Data. 

If the appropriate quantizing theorems apply, equa- 
tions (6) to (10) indicate that the effects of even rela- 
tively coarse quantization on statistics are either 
negligible or easily corrected. Actually, real random 
data cannot possibly satisfy the conditions of section 
3 exactly, since physical signals are necessarily 
bounded; for continuous x(t),  moreover, statistical 
independence of nQ ( t l ) ,  nQ ( t z )  for arbitrarily small 
7 = t2 - f 1  would imply infinite signal power.’*16 Never- 
theless, many real signals satisfy the quantizing the- 
orems so nearly that excellent approximations result, 
and the errors of such approximations can be neatly 
predicted by the relations of section 9. 

For the important case of Gaussian data, Table 1 
and Figure 2 summarize the most important results 
and indicate that quantization errors in measurements 
of E { x } ,  E { x z } ,  and R,, (7) for Gaussian processes 
are either negligible or easily corrected, even with 
class intervals Ax as large as 3 u .  

5 .  Simplijied Correlators 
Hybrid analog-digital techniques involving coarse 

quantization are especially fruitful for correlation 
measurements, for we may be able to replace relatively 
expensive analog delay and multiplier circuits by 
simple digital circuits. With Gaussian (or approxi- 
mately Gaussian) signals, three-bit-plus-sign conver- 
sion and delay circuits can feed a simple digital or 
hybrid multiplierlaccumulator to produce excellent 
correlation estimates in many practical applica- 

Even one-bit correlators, which merely average sgn 
x ( t l )  sgny(t2) with the simplest of digital circuitry 
(Figure 3a), can be very useful. For Gaussian data 
with zero mean, in particular, the one-bit correlation 
function is simply related to the true correlation 
function R,, ( t l ,  t 2 )  :6 

tions.1,4,5 , 1 7 , 2 0 f O 2 6  

( 1  1) 
Similar formulas have been derived for autocorrelation 
and cross-correlation of known signals with additive 
Gaussian noise.1.4JfO 11923 One-bit correlators are 
especially inexpensive and reliable, since they require 
only comparators and digital circuitry. One-bit correla- 
tors can replace true correlators in many testing, detec- 
tion and process-measurement applications: Widrow,’ 
for instance, applied one-bit correlation to recorded 
radar returns from the planet Venus and obtained prac- 
tically unequivocal detection in over 40 db of noise. 

Table I -Errors Resulting from Application of 
Equations (6) and (7) to Gaussian Processes 

(Data from reference 1) 

1 

0 
1 .OO 0.950 0.900 0.850 0.800 0.750 

Figure 2 -Normalized autocorrelation function of 
quantization nolSe,pn,,,,,, = pzLIz,, - P ~ Z  versus pz, 

for stationary Gaussian x(r), where 

P== 

(based on reference 1). 

Sample counter 
-preset for 

Pulses at r =  tk  Pulses at n samples 
r = r k + T  

R e s e t . 1  t 
Correlation 
counter, counts Gated flip-flop 

(digital sample- hold) , :[comelation est.+]] I 

Comparators 1 - 1 1  I 

(reset to-?) m 
EIy}=O u NOTE: digital “1” is -6 volts 

Figure 3a- Approximate correlation employing 
one-bit quantization of x and y 
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As a somewhat less radical measure, we can cor- 
relate xu ( t l )  with ! ( [?) ,  ;.e.,  we quantize only one of 
the two correlator input signals. This still permits 
digital delay, and multiplication is conveniently ac- 
complished with a simple D/A converter whose ref- 
erence input is replaced by ?’ ( [?) .  The  simplest 
correlators of this type employ one-bit quantization of 
x ( I 1 )  , ;.e., they average y ( t? )  sgn x ( t l )  ; this permits 
hybrid multiplication by a simple analog switch (Fig- 
ure 3b). For- Galrssian signals \$ i th zero mean, the 
resulting estimates are simply proportional to true 
correlation estimates:”* l7 

In  particular, for any Gaussian x with zero mean, 

(13 

which permits us to measure the mean square of a 
Gaussian signal by its mean absolute value, which is 
usually easier to compute. 

6 .  Use of Dither.1~12~24 
Given any random variable s.,. which satisfies the 

first or second quantizing theorem of section 3, the 
same holds for the sum x + s.,. of s.,. and every random 
variable .r statistically independent of s.,., since 

(section 2). Even if sr satisfies 

only approximately, x + ss will also satisfy the quan- 
tizing theorem approximately. 

We can, therefore, greatly extend the applicability 
of coarse-quantization estimates by adding difher or 
interpolation variubles ssr s,, to practically arbitrary 
input data x and/or y .  Figure 4a shows the use of 
dither for coarse-quantization estimation of E { x } .  
The dither input s.,. must 
a. Satisfy the condition ( I  5) (for the given class-inter- 

val size A x )  to a sufficiently good approximation. 
b. Be statistically independent of x. 
c. Have zero mean so as not to bias our estimate, ;.e., 

d. Contain no spectral components lower in frequency 
than the most significant signal components; dither 
frequencies as high as our apparatus will handle 
will favor our filtering operations. 

E{  x + S.,. } = E {  x } . 

4 

0 . 
Speaking in terms of voltage measurements, s.,. = s.,. ( I )  
can be a noise voltage or an independent periodic volt- , . 
age added to the data input x ( t ) .  In the latter case, 
e. Periodic-dither frequencies must be either incom- 

mensurable with the sampling frequency, or they 
may be cleverly synchronized with the sampling 
rate so as to generate a “typical” pseudo-random 
sample of dither over the averaging period (Fig- 
ure 4c).22,24 
To approximate the condition (1 5) ,  s.,. must range 

at least between -Ax/2 and Ax/2 .  The approximation 
will, generally speaking, improve with larger dither 
voltages, but the mean-square dither also increases 
estimate variances (section 7). Triangle-wave or saw- 
tooth dither, which is uniformly distributed over its 
amplitude range, is convenient. For a peak-to-peak 
triangle or sawtooth amplitude equal to one class- 
interval width A x ,  it is shown in section 13 that 

holds exactly, even though the triangle wave satisfies 
the quantizing theorem only approximately. We can 
interpret the effect of the dither intuitively as a sort 
of statistical interpolation which distributesx+s, more 
evenly over the discrete sample values of ( x + s s ) y .  

For correlation, dither voltages s.,. and s U  are added 
to the respective correlator inputs x and y. s.,. and s,, 
must have zero mean and must be mutually uncorre- 
lated and statistically independent of x and y .  For 
triangle waves s.,., sU with zero mean, peak-to-peak 
amplitudes A x ,  by, and different frequencies, 

E { ( x + s . , . ) y ( Y + s , , ) Q } = E { x y }  (17) 

(see also section 13). 

Figure 4b illustrates the special case of one-bit 
correlation with dither. For signals x, y both ranging 
between -a and a ,  one-bit quantization groups data 
into two class intervals centered at - a / 2  and a / 2 ,  and 
the class-interval width is A x =  Ay = a. This requires a 
peak-to-peak amplitude 2c1 for triangle-wave dither. 
Since the new variables x + ssr y + s,, range between 
-2u and 2 a ,  their one-bit quantization corresponds 
to class-interval centers at -(I and ( I ,  so that 

( ~ + . S . , . ) ~ = C I  sgn (x+s.,.) 
(18) 

( y  + .v!,h = u sgn ( Y  + s,,) 
The analysis outlined in section 13 shows that 

Although the addition of appropriate zero-mean 
dither will not bias our estimates, it can affect estimate 
\‘uricrnces. To minimize variance increases due to 
dither, we favor the use of periodic dither and 



a. Employ as high dtther frequencies as practical. 
b. Compute finite-time averages over an integral num- - ber of dither periods (this implies the use of har- 

monically related dither frequencies in correlators). 
c. Generate “representative” dither samples in the 

manner of Figure 4c. 

7. Effect of Quantization on Statistical Fluctuations. 
When quantized samples of x Q ( t )  are used to com- 

pute sampled-data estimates of E{x(tl)}, viz., 

(sample average over n independent experiments) or 

(20b) 
1 ”  

[xQ]n=- XQ(kAt) 
n k = l  

(sampled-data time average for a stationary process), 
the estimate variances are given b y  

Var {XQ ( t ~  ) 1 = - Var {XQ (tl  ) } 
1 
n 

{RrQzQ (kAt)  - [E(XQ)I2} 
Equations (6) to (lo), Table 1, and Figure 2 indicate 
that these variances will not differ too badly from the 
corresponding expressions for unquantized data as 
long as the quantizing theorems hold approximately. 
In particular, we have in this case 

Similarly, correlation-estimate variances2 are not seri- 
ously increased by quantization if appropriate second- 
order  and fourth-order joint  distributions of the  
correlator inputs x, y are “band-limited.’’ 

I f  we  e m p l o y  d i t h e r  ( sec t ion  6) f o r  c o a r s e -  
quantization measurements of E { x } ,  the dither vari- 
ance Var {ss} will, approximately,* simply add to the 
quantization-noise variance (Ax)’/ 12. For triangle- 
wave dither ss of peak-to-peak amplitude Ax,Var{sr)= 
( A ~ ) ~ / l 2 ,  and 

Var{(x+s,)a} s Var{x)+-(Ax)* (23) 

For one-bit correlation without dither (section 5 ) ,  we 
cannot usually apply the quantizing theorem, but we 
know that the square of the digital multiplier output 
sgn x sgn y in Figure 3a is necessarily aiways i. i-ience 

Var { sgnx sgny} = E{ [ sgnx sgnyI2} 

1 
6 

(24) 
- [E{ s m x  sgny)l2 

= I - [E{ sgnx sgny)I2 
where we can substitute the expression ( 1  I ) ,  when x 
and y are Gaussian signals with zero mean. 
*The exact variance can be computed from equation (35) with the 
aid of the relation (4). 

Averaging 
device 

Pulses at r = t k  

Gated flip-flop i (digital sample - hold) 
I -  I I 

Comparator 

Level (Hold 4 at 

Figure 3b - Approximate correlation employing 
one-bit quantization of x.  

AID converter 

mean-square 
computer 

Figure 4a, b- Hybrid analog-digital averaging circuit 
with dither (a), and one-bit correlator with dither (b). 

A Dither 

Slow sampling pulses 
I I I 

Figure 4c- Synchronization of periodic dither and sampling 
pulse for fast sampling (approximating continuous averaging) 
and for slow sampling. The averaging period should equal a 
(large) integral number of dither periods. Sawtooth waves 

and staircase waveforms derived from digital counters 
can replace the triangle-wave dither. 
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If we have no a priori knowledge about x and y 
other than their range--a to u,  one-bit correlation will 
require dither, say triangle-wave dither with peak-to- 
peak amplitude 2u (section 6) .  The square of the digi- 
tal-multiplier output is always 1 ; recalling equation 
(16) ,  we find 
E {  [ ( x +  S . r ) U ( Y  + S!/)UI'} 

Var{ ( x  + s.,.)~ ( y  + s,,)y} = ri4 - [ E { x y }  1' 

= ti4E{ sgn ( x  + s.,.) sgn(y + sy) } = a4 

( 2 5 )  
if these quantities exist, no matter how large or  small 
Var {xy} is. The possibly very high variance ( 2 5 )  
expresses the infc:mation loss in one-bii correlation 
and is the price of equipment simplicity. The resulting 
estimate variances might turn out to be impractically 
large for reasonable sample sizes or  observation times. 
In particular, for the independent-sample estimate 

It follows that 

. .  

r? sgn (x + s J )  sgn (y  + s , ) ,  we find 

( 2 6 )  Var{ti2 sgn (x+.s.,.) sgn (y+s, , )}= 

Smit?" on the other hand, studied the polarity-coinci- 

dence estimates sgn x( t ) sgn x(  t + 7) and sin 7 sgn x 

(1) sgn .r ( t  + T )  f o r  the normrilizrd riirtoc.orrelution 

function E { . r ( t ) , r ( t + ~ ) } / E { ~ ~ ( t ) }  of Gaussian sig- 
nals experimentally. Using closc4y sprrced (corre- 
lated) samples and no dither, he found that the disper- 
sion of the polarity-coincidence estimate was rarely 
over 150 per cent of the  dispersion measured for the 
conventional estimate x ( t ) x (  t +  T)/.?( t )  ; this was 
readily overcome through an increase in the sample 
size. The difference between the percentage errors of 
the polarity-coincidence and conventional estimates 
was even smaller. Fluctuation errors of polarity- 
coincidence correlation estimates surely deserve more 
theoretical and experimental study. 

rl4 - [ E { x y } ] '  
I1 

[" 1 

THEORETICAL JUSTIGICATIOIN ' 

8. Probability Distribution of the Quant i zed  Variable. a 

Referring back to section 1 and Figure 1, we con- 
sider a continuous random input x = x (  t )  with first- 
order probability density p ( x )  at some sampling time 
t =  t l .  The corresponding quantizer output 

Ax Ax 
2 2 x H = x + n Y = i A x  ( ; A x - - <  X S  ; A X + - ;  

j=0,'1,'2, ...) ( 2 7 )  
is a discrete random variable, but we can represent its 
distribution by a (symbolic) probability density 

\ "  
c 

i .e . ,  by "comb" of impulse functions concentrating the 
probabilities 

at the class-interval 

centers ;Ax (Figure Sa). We rewrite the expression (28) 

as 
with 

where each coefficient appears as a convolution of p ( x )  
and the "rectangle function" 

L 

Similarly, for a pair of random variables x , y  with joint 
probability density p ( x , y ) ,  we can represent the joint 
distribution of the quantizer outputs.ry, y~ by the sym- 
bolic density 

r m  

PY ( X Y  ~ Y Q )  = =? 
~ =C_ ( ' i d  ( X Q  - ;Ax)  6 (YU - k A y )  

(31a) 
with 

X Y L : p ( x - i A x , y - k A y )  rect- Ax rect-dxdy A y  

(i, k = O ,  '1, - 2 ,  e - . )  (31b) 

* 1.. Xu Figure 5 - Probability distribution of a quantizer output (a) and 
formation of the quantizer-output characteristic function (b). 

6 
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9. Proof of the Quantizing Theorems. 

We recall 

eJwa(x- i&-)dx= eJiqAs 

to find the characteristic function (section 2) of the 
quantizer output X Q ,  viz., 

x Q ( q )  =Im --m pQ(xQ)dxQ 

1 = - C C  

This is a Fourier series representing a periodic func- 
tion with period 27rlAx. Since 27rp(A-iAx) is the 
Fourier transform of e --jiqAr ~ ( q ) ,  and 2 7 ~  rect A/Ax is 
the Fourier transform of Ax sin (qAx /2 ) / (qAx /2 ) ,  we 
can use Borel’s convolution theorem3 to transform the 
convolution integrals (29b) into products, so that 

2 
(33) 

with suitable convergence implied by the integrability 
of p(x).’ Under the integral sign it is safe to employ the 
symbolic Fourier-series relation 

(34) 

It follows that our Fourier series (32) or (33) repre- 
sents the periodic function 

. / .27r\Ax 

obtained through superposition of similar terms dis- 
placed by successive multiples of 27rlAx. 

27T 

Ax If now xs ( q )  = O  for 141 3 ---E ( e o ) ,  then adja- 

cent replicas of xr (4) sin (qAx/2) (qAx/2) in Figure 5b 
do not overlap in the interval - E  < q < E ,  so that 

sin 2 qAx 

XQ(4)  =X.r(q) - ( 1 4 1 < E )  (36) g& 
2 

Differentiation of equation (36) relates every exist- 
ing derivative of xs (q) at q = 0 uniquely to derivatives 
of x4 (q) a t  q = 0. Remembering equation (4), we can 
recover every existing expected value (momen t )  
E { x m }  m = 1,2, . . .) from the quantizer-output distri- 
bution if the first-order probability distribution of the 
input x is “band-limited” so that xs(q)=O for 141 

27r a-- E ( E  > 0). More specifically, differentiation of Ax 
equation (36) at q = 0 yields the important relations (6). 

For  E 2 7r/ Ax, there is no overlap at all in Figure 5b, 
and X Q ( ~ )  defines ~ ~ ( 9 )  uniquely: the first-order 
probability distribution of the input x is completely 
determined by  that of the quantizer output XQ if 
~ ~ ( 4 )  = O  for lql 2 7r/Ax. This theorem is similar to 
(but not identical with) the well-known sampling 
theorem3 for band-limited time functions. 

Precisely analogous reasoning produces similar re- 
sults for the joint distributions of two random variables 
x ,  y and of two corresponding quantizer OutputsXp, YQ. 
I f ~ ~ , ~ ( q ~ . q ~ ) = O f o r ~ q ~ ~  3 ~ T / A x - - E ,  1421 s 2 d A y - e  
( E  > 0 ) ,  then 

qiAx qzAy 
2 2 sin- sin- 

(Iqll?ls2l < E )  

2 2 (37) 

X Q  (41 9 4 2 )  = XZ,Y  (41 , q 2 )  ~ ~ 

~~ 41Ax 42AY 

Differentiation at q1 = q2 = 0 yields equation (8) and 
similar relations for higher-order moments. Finally, 
x ~ , ~  (qlrqP) and hence the joint second-order distribu- 
tion of x and y is completely determined by that ofxq 
and YQ if ~ ~ , ~ ( q l , q z )  = O  for 1911 3 .rr/Ax,IqzI 3 ~ A Y .  

10. Properties of Quantization Noise. 

If x is in the ith class interval, the first-order proba- 
bility density of the quantization noise nQ = X, - x is 
ps  ( n g  - iAx) rect n p /  Ax. Thus, 

m 

(38) 
The characteristic function XnQ(q) is 1/27r times the 
inverse Fourier transform of pnQ(nQ). We recall that 
27rps(nQ - iAx) is the Fourier transform of e-JiqAs 
x s ( q ) ,  and that 27r rectnQ/Ax is the Fourier transform 
of Ax sin (qAx/2) / (qAx/2).  We again apply Borel’s 
convolution theorem, this time to make transform 
products into convolutions: 

png(nQ)=. p,(nQ-iAX) WCt- nQ 
Ax t = - - m  

7 



We once again employ the relation (34) and find 

I f  the distribution of our input signal x is "band- 
limited' so that 

xx(q) =Ofor 141 3 2r/Ax, then 

qAx sin 2 

2 

1 n4 p n ,  (np)  = - rect - 
Xn&) =qhx - Ax Ax 

1 
12 Var { n p }  = E { n t }  =-(Ax)2 E{ np}  = 0 

i.e., the quantization noise is uniformly distributed 
between -Ax/ 2 and Ax/ 2. 

Precisely analogous reasoning yields the joint distri- 
bution of quantization-noise samples ne, = xq - x, npl 

= yp - y .  We find 

E{nprr nuv) = 0 I 
i.e., the quantization-noise samples npZ and nu1 are 
uniformly distributed and statistically independent, 
even though x and y may not be independent. 

When the first quantizing theorem of section 3 holds, 
then equations (6) and (40) imply 

Rs ,n , ( t l , t l )  = E { x ( t l ) n u ( t l ) }  (43) 
1 
2 =-[Var{xu(tl)}-Var{x(tl)}-Var{n~(tl)}] = O  

I t  can also be shown' that Rr, ,u( t l ,  r 2 )  must be zero for 
all 7 = rr - r1  ; hence quantization noise and input are 
uncorrelated ( nu is, of course, not statistically inde- 
pendent of x, but, indeed, completely determined when 
x is given). For Gaussian data with Ax < 3 0 ,  the ex- 
pression (43) is not zero, but can be calculated with 
the aid of Table 1 ; R,,,, is still small. 

Y . 
I I .  Quanrization of Gaussian Variables.' 

(a) For Gaussian data 

Substitution of the Gaussian characteristic function 
~ ~ ( 4 )  into equation (35)  yieldsXy(q). I f .$  = E{x} = 0 
(Gaussian data with zero mean), then pu(x) is, like 
p ( x ) ,  an even function, and 

E{x,"} = E { x m }  = 0 ( m  = 1 , 3 , 5 ,  . ) (45) 

In this case x u ( 4 ) ,  too, is an even real function, which 
looks iikc Figure 5b; for A x  b, only the terms cor- 
responding to i = 0, i = * 1 in equation (35)  contribute 
appreciably to the derivatives of ~ ~ ( 4 )  at q = 0. Spe- 
cifically, the contribution of the i = ' 1  terms to the 
derivative at 4 = 0 is1 

1 
E { x ~ }  - E { x ' }  -E (AX)'= 

which was used in the computation of Table 1 .  Using 
equation (39), we similarly compute 

(b) Fore = E { x }  + 0, differentiation of equation (35)  
yields, in accordance with equation (4), 

if we neglect all terms other than those with i =  0, i=  
k 1. Note that the correction varies sinusoidally with 5. 

(c) For stationary Gaussian data with zero means, 
the joint distribution of x I  =x( r l ) , x2 ( t z )  is described 
by 

(49) 

where p is the correlation coefficient E{xIx2)/c2= 
R s s ( f 2 - r l ) / a 2 .  Equation (35) yields x u ( q l , q 2 ) .  and 
differentiation in accordance with equation (4) pro- 
duces the approximate values of E { x l y x 2 u }  used in 
Figure 3.  

Note that similar calculations can be carried out for 
non-Gaussian data as well, as long as the requisite 
characteristic functions are known and decay reason- 
ably quickly as 141 increases. 
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. V 

12. Shifted Class Intervals, Simplified 
Correlators, and Unequal Class Intervals. 

Watts" has extended Widrow's theory to the case 
of quantization by class intervals shifted with respect 
to those in Figure 1, i.e., 

al + iAx -- < x s a1 + iAx +- ( i  = O , +  1,&2,  1 
Ax Ax 
2 2 

2 

* )  

u2 + k A y - 2  AY < y s a2+ ~ A Y + ~  (k=O,-+ I , ?  2 ,  - e )  

(5  1) 
(Figure 6). A derivation analogous to that of section 
9 yields 

q2 - k k )  
AY 

sin (4,  -E)? . sin (q2 - k z ) $  
IC? \  

These expressions reduce to equations (35) and (37) 
for a l = a z = O ;  the general formulas can be useful 
where analog-to-digital converters are expressly de- 
signed for specific ranges of random variables. A more 
important application is the one-bit quantization em- 

la) OUT 
al +2Ax A- - - - 1 - - - - - -r 

U l + h  ----- I 

ployed in the simplified correlators of section 5. For 
the one-bit correlator of Figure 3a, 

(54) 

if both x and y are assumed to range between -a and 
a, so that equation (53) becomes 

( 5 5  

If x alone is quantized, equation (53) is replaced by 

sin q l - i - -  - 

(ql - ig)y (56) 
( 

where we again substi tute al = A d 2  for  one-bit 
quantization, as in Figure 3b. The results of section 5 
follow by differentiation of equations ( 5 5 )  and (56) in 
accordance with the relation (4). 

Further improvements in the quality of coarse- 
quantization estimates might result from the use of 
suitably selected unequal class intervals. Such tech- 
niques, explored in a different context in references 
27 to 30, bear further investigation in connection with 
statistical measurements. Unequal-interval quantiza- 
tion would seem to apply mainly to specialized appli- 
cations affording a good deal of u priori knowledge of 
signal distributions. 

OUT 

t 

IN 

Figure 6-Quantization with shifted class intervals (a), and the special case u= Ax/2  (b). 
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13. Quantization of Signal Plus Dither. 
Let x be an input signal which may or may not sat- 

isfy a quantizing theorem. We add a dither variable ss 
uniformly distributed between -b and b to x (Figure 
4a), so that 

Let ss = ss( t )  be statistically independent of x( 1 )  
(random-phase triangle wave whose frequency is not 
commensurable with that of any periodic component 
of A).  Theii, i i i  cic;ioidaiiLt. with equation j14), 

and equation (52) yields the characteristic function of 
the quantizer output in Figure 4a 

s inh (y - - ig )  s i n ( 4 - i E ) y  
h ( q - i g )  ( 4 - i E ) F  ( 5 %  

~ - ~~~ 
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If we choose the dither amplitude b so that 

Ax 
b = T  

then 

sin 4-1- - 

4-1- - 

( 
X ( S + S & ( 4 )  = 2 f?2nj+xs ( 4 -ig)[ ( .2?r)Ax ] 

I = - %  

Ax 2 

For = 0 or  a, = Axi2 (see aiso section I2j, dif- 
ferentiation of equation (61) at q = O  in accordance 
with equation (4) produces the exact result 

(62) E{ (x + S X h )  = E { x )  

even though the distribution of x + sr is only approxi- 
mately "band-limited.'' Quite similarly, we can add 
uncorrelated dither samples ssr sy (samples of triangle 
waveforms with different frequencies and amplitudes 
Ax/2, Ay/2) to the input signals x, y of a correlator and 
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Iterative-Diff erential-Analyzer Study 
of Prediction Networks 

by JAMES.L. MELSA and MICHAEL J. WOZNY 

Department of Electrical Engineering 

University of Arizona 

ABSTRACT 
Iterative-differential-analyzer methods are presented 
which allow experimental studies of prediction net- 
works to be performed without the use of delay lines. 
Two classes of problems are examined in this paper: 

7. Prediction of stochastic signals with no noise 
present. 

2. Prediction and filtering of deterministic signals 
masked by noise. Measurement techniques are de- 
veloped for each case, and experimental verification 
is  included. 

INTRODUCTION 
The basic problem in experimental studies of predic- 
tion networks is that some form of time delay is  
needed in order to measure the errors involved in 
a given predictor design. Since accurate delay lines 
are not readily available, it is  desirable to examine 
other methods of delay. 

This paper describes a method of time delay which 
makes use of the digitally timed track-hold circuits 
of ASTRAC I,' an iterative-differential analyzer. The 
method given is ideally suited to the study of non- 
linear prediction networks. (A block diagram of the 
ASTRAC I system is shown in Figure 1.) 

Prediction networks have been studied on DC 
analog computers using a power spectral density 
approach, but this method requires repeated runs, 
hence a large expenditure of time or equipment.2 

The Wiener prediction filter design for a stochastic 
signal with no noise is  examined first to demonstrate 
the repetitive analog technique. The technique is 
then applied to the examination of the finite-time- 
finite-order prediction system of Zadeh and Ragaz- 
zini. Simple examples were used in this paper so that 
exact theoretical results could be obtained and com- 
pared with the experimental results. The distinct 
feature of the measurement techniques is  that they 
apply directly to both nonlinear and time-varying 
systems. 

SET NUMBER OF RUNS 
1 --- - -- - - - - ALL-DIGITAL 

*--1 I CLOCK CONTROL 
I 

I I I 
I 

I 

I 

1 1  I 
I 

I 
I RESET 
I PULSES 
V READ I 

ENSEMBLE 
STATISTICS 
COMPUTER 

REPETITIVE 
ANALOG COMPUTER 

- RUN1 -RUN2 -RUN3 -RUN4 - 
+ l/REP. RATE- 

1 tl  I tl I t1 I t1 
I I 

I 
I 
I 
I 

START RUN AND t, PULSES 
I 
I I 

I 

I 
I 
I I 

!COMPUTER RES€+ PULSES I 

COMPUTER OUTPUT AND SAMPLES k,,,, READ INTO STATISTICS COMPUTER 

Figure 1 -The ASTRAC I System 
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. 
PREDICTION OF RANDOM SIGNALS 
WITH NO NOISE 
The characteristics of the linear Wiener prediction 
filter, optimum in the least-square sense, are consid- 
ered in detail in this section. The basic equations are 
presented, and the filter operation examined experi- 
mentally on an iterative-differential-analyzer. 

NOISE 
GENERATOR 

(including low- 
pass shaping 

STATISTICS 
€(PI = 0.' +-=$I COMPUTER 

s, 

Figure 2 -Computer Diagram for Measuring Mean Square Error 
of Wiener Prediction Filter Example 

Figure 3 -Timing Diagram for Wiener Filter Example 

A. Design Equations 
A random signal was obtained by passing a ran- 

dom telegraph wave with Poisson distributed event 
points through a first-order, low-pass filter. The re- 
sulting normalized autocorrelation function as de- 
fined and derived in reference 3 is 

' 

R,,(T) = e--wolTl (1 ) 
where w, i s  the cut-off frequency of the first-order, 
low-pass shaping filter. 

If the desired prediction time is  a, the required 
optimum Wiener prediction filter* is  an attenuator 

0 (2) 

= (1 - e--l'ca) (3) 

H = e-idoa 

The resulting normalized mean square error is  then 

B. Measurement Technique 
The time delay required for making error measure- 

ments was obtained by controlling the time interval 
between the sampling operations of two track-hold 
circuits. The block diagram of the measuring tech- 
nique is  shown in Figure 2, and the corresponding 
timing diagram in Figure 3. The mean square value 
of the output of track-hold circuit 2 was computed 
using the statistics c ~ m p u t e r . ~  

C. Experimental Verification 
Since the primary goal of this study was to evaluate 

the proposed measurement technique, the entire dy- 
namic range of the digital time control of ASTRAC I 
was used. For reasons of accuracy this required three 
separate time delay ranges, each with a different cut- 
off frequency of the random signal spectral density; 
see Table 1. 

TABLE 1 -Dynamic Range of Time Delay 

*The derivation of the Wiener filter appears in many books and 
therefore will not be given here. See for example Bendat, Prin- 
ciples and Applications of Random Noise Theory, p. 179. 
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Figure 4 - Normalized Mean Square Error for Various Prediction 
Times and Cutoff Frequencies 

To minimize computer errors the normalized error 
was used, i.e., the ratio of the mean square error to 
the mean square value of the input signal. Also the 
mean square value of the input signal was measured 
through the track-hold circuit 2 so that any offset 
would be “calibrated out” in the normalizing of the 
mean square error. 

Data to within 2 per cent of the theoretical values 
was obtained over the range of prediction times 
0.4 ms to 70 ms. The errors for very short time delays, 
less than 0.4 ms, were approximately in the 10 p e c  
range of accuracy of the ASTRAC I computer clock. 
For very long delays the errors became slightly larger 
than 2 per cent with the measured value being 
smaller than the calculated value. The curves for the 
three time ranges studied are given in Figure 4. 

The effect of non-optimum prediction networks on 
mean square error was also studied. The mean square 
value for a non-optimum filter, H = SH,, was found 
to be 

002 1 - 2CH: + r H , 2  
(4) 

P l o t t i n g 7  as a function of 5 provides an indication 

of the required tolerance in designing the prediction 
filter. See Figure 5 for an experimental curve. 

-- - 
e p t  1-HH,2 

u02 
u opt 

L 

. - .  
-60% -30°/o -lOo/o 10% 30% 60% 

VARIATION IN OPTIMAL FILTER MAGNITUDE 

Figure 5 - Effect of Variations in Optimum Filter Magnitude for 
Prediction Time of 1 ms and a Cutoff Frequency of 100 cps 



. 
Under these conditions the optimum finite mem- 

ory system g,(t) is  given by 
PREDICTION OF A DETERMINISTIC SIGNAL 
IN RANDOM NOISE 
Although the prediction and filtering of a determin- 
istic signal which is masked by random noise may be 
handled in a manner similar to that presented in the 
previous section, another method is  presented here 
to show the power of iterative-differential-analyzer 
techniques in the study of prediction. The method 
presented here was first introduced by Zadeh and 
Ragazzini in 1950' and i s  termed the finite-time- 
finite-order system. A brief presentation of the design 
equations is  followed by the development of a meas- 
urement technique. Finally, an example is presented 
with experi men ta 1 verification. 

A. Design Equations 
The finite-time-finite-order system is based on the 

following design requirements: 

1. The system must yield no error after a finite ob- 
servation time, T ,  when the noise power is 
negligible. 

2. The mean square value of the output noise isto 
be minimized. 

Consider the system shown in Figure 6. The de- 
sired output v(t) is  obtained by a given linear, time- 
invariant operation on r([). The system input is  
masked by an additive stationary random noise n(t). 

n ( t )  
IC 

I 
I 
I 
L - - - - - -  

Figure 6 - Finite-Time, Finite-Order System 

The input function r(t3 i s  restricted to be a linear 
combination of known signals f , ( t )  with unknown 
coefficients A, 

t=  1 

(5) 

where the set of known functions satisfies the fol- 
lowing equations 

= 0 otherwise 

with gJt) given by 

j go&)@nn(t - t,)dt, = fi(T - t )  

for 0 < t < T 

where Gnn(Tj is the unnormalized autocorrelation 
function of the random noise. The M coefficients, 
Xi, are evaluated by substitution of g,(t) into M con- 
straint equations 

(8) 
0 

m 

g,(t)f,(T - t)dt = h(t)fi(T- t)dt  S 
--a, 

i = 1 ,2 , .  . . , M (9) 

The reader is referred to Change for a complete 
derivation of these equations. 

!, 

B. Measurement Technique 
The basic problem encountered when trying to 

experimentally verify the system derived in the pre- 
vious section is that the finite memory feature neces- 
sitates a delay line. An iterative-differential analyzer 
technique is  presented here which makes it possible 
to measure the mean square value of the output noise 
without the use of a delay line. 

The technique centers about the following argu- 
ment. Consider a system g,(t) which has an impulse 
response identical to g,(t) during the f irst T seconds 
but is  not zero thereafter. If the noise is gated into 
this system at to and the output measured at to + T ,  
it must be identical with the output that the finite 
memory system would yield; since in both cases only 
a finite duration of noise input was used. By running 
the g,(t) system in a repetitive mode, the noise i s  
gated into the system for T seconds, an output sample 
taken, and the system reset. The ensemble average 
of the square of these output samples i s  equal to the 
mean square value of the output noise.. The equiv- 
alence of the ensemble average to the mean square 
value can be shown in a more rigorous mathematical 
manner by considering the system shown in Figure 7. 

Figure 7 -The &(t )  System 

16 



If the switch i s  closed at t=to, and the output 
sampled at t = to + T ,  then: 

03 

c(to + T )  = J g,(X)n(t, + T - X)~X 
0 

But 

n(t,+T-A)=O for t ,+T--X< to 
and for X > T.  

Therefore 

and 
T T  

But by definition: 

therefore 
T T  

J J  

(11) 

which is  the mean square value of the output noise 
for the go(t) system. Thus the equivalence is dem- 
onstrated. 

In general it is  possible to build the g,(t) system 
without the use of a delay line. This may be done by 
building the go(t) system but not including the delay 
line portion which gives it a finite memory. Since this 

than T ,  i t  is  desirable to reset the system relatively 
soon after the finite observation time, T .  

By the use of the g,(t) system it is  possible to study 
the transient behavior of the system during the first T 
seconds after a change in the input has occurred. 
This may appear to be rather insignificant, but if the 
system is properly designed the error will be zero 
after T seconds and the first T seconds will contain 
all of the transient information. 

0 0  

g 'i' - . . : I1  ------I! . .  L-----n ,,nct=hlp fnr t much larger 
I \  wlll l l U l l l l d l l y  UCLWIIIL U * I ~ L U Y . - -  .-. 

C. An Example of Finite-Memory Prediction System 
As a specific case, consider the following problem: 

A signal r(t) = a, +a,t with unknown coefficients a,, 
and a, is masked by white noise, &,,(T) = NZS(d.  
Determine go(t) of a system which gives unerring pre- 
diction for cy seconds ahead if the noise power is  
zero and has minimum mean square output noise. 
Solving for the optimum finite memory system 

= 0 otherwise. (1 2) 

Thus the optimum system is  independent of N2, 
a, and a, as would be expected. Using this system as 
an example, experimental verification will be made 
of the measurement technique presented in the prev- 
ious section. 

D. Experimental Verification of Measurement 
Technique 

It was decided to use a range of T from 30 to 80 
milliseconds and cy from 0 to 20 milliseconds. A basic 
factor leading to this choice was that for smaller 
values of T the gain of the system was excessive, and 
for larger values, taking a sufficient number of 
samples was a prohibitively long process. 

The noise source used in the experimental work 
was a random telegraph wave with Poisson-distrib- 
uted event points filtered by a first-order, low-pass 
shaping filter. The unnormalized autocorrelation is  

Where M is  the magnitude of the random tele- 
graph wave, P i s  the mean count rate and w, is the 
cut-off frequency of the shaping filter. If the band- 
width of the system is  much less than w,, the ratio of 
output to input mean square value is 

since the input may be assumed to be white noise 
!"PWC 

2P . 
with mean square value - 

Unfortunately due to the finite memory nature of 
the system, it was rather difficult to get a meaningful 
measure of bandwidth. An alternate path was to find 
the actual ratio of output to input mean square value 
assuming that the input noise had the correlation 
function of Equation (13) rather than being white 
noise. 
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DIAGRAM 

Figure 8-Computer Diagram for h .Jawring 
Output Noise for the Finite-Time, Finite Order Example 

r RESET COMPUTE 

lean Square 

The resulting ratio of mean square output to mean 
square input is: 

2 

x [i + I(+) + 18 (F) '1 - &[l+ + 4 (+) 
The first term can be recognized as that resulting 

from the white noise assumption. The last two terms 
are the corrections due to the fact that the input was 
actually a filtered random telegraph wave. These cor- 
rection terms become appreciable at the smallest 
values of T and larger values of a. The experiment as 
set up on an iterative-differential-analyzer is  shown 
in Figure 8; a timing diagram is shown in Figure 9. 

RESET COMPUTE RESET 

Figure 9- Timing Diagram for Finite-Time, Finite Order Example 
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The values of the potentiometers 1,2, and 3, and the 
' ~ gain K are given in Table 2 for various values of T 

and a. 

TABLE 2 - Potentiometer Settings and Amplifier Cain 

Using this experimental facility, the ratio of mean 
square output to mean square input was determined 
experimentally. These experimental points are 
plotted on Figures 10 and 11 and show very good 
correspondence with the theoretical values given by 
Equation (15). 

The transient behavior of the system to the input 
signal r ( t )  was also studied. It was decided to de- 
termine experimentally the integral square error for 
a ramp input, r ( t )  = Bt with various values of obser- 
vation and prediction time. The theoretical value of 
normalized ISE was found to be 

1 ISE 1 I(+) I$#?)' 

105 +35 +3- 
(1 7) 

In order to make the experimental measurements, 
it was necessary to modify slightly the system shown 
in Figure IO. The experimental set-up used is shown 
in Figure 12. The noise generator has been replaced 
by two two-mode integrators which were used to 
generate r ( t )  and r(t + a). The values of potentiom- 
eters 1, 2, 3, and gain K are given in Table 2; the 

0 20 40 

OBSERVATION TIME (ms), J 

Figure 10-Variation of Mean Square Output as a Function of 
Observation Time with Constant Prediction Time of 10 ms 

0 5 10 15 20 

PREDICTION TIME (ms), a 

Figure 11 -Variation of Mean Square Output to Mean Square 
input as a Function of Prediction Time for 

Constant Observation Time of 50 ms 

4 
(NOTE: See Figures 8 and 9 for logic and timing diagrams.) 

Figure 12 -Computer Diagram for Measuring integral Square 
Error for Finite-Time, Finite Order Example 



nominal value of 6 was taken as 1000. The gain K, 
was adjusted to keep the multiplier input voltage 
within a proper range for accurate operation. The 

theoretical and experimental values of ISE/BZ for 
various T and a are plotted in Figures 13 and 14. 
Again good correspondence is  noted. 
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Figure 14 - Variation of Normalized Integral Square Error 
as a Function of Prediction Time for a 
Constant Observation Time of 50 ms 

CONCLUSIONS REFERENCES 

This paper has presented an iterative-differential- 
analyzer method for studying prediction networks. 
The method involves using digitally timed track-hold 
circuits as time delay elements. Experimental results 
are presented for a Wiener prediction filter and a 
finite-time-finite-order prediction system. These re- 
sults agree very closely with the theoretical values 
thus verifying the method. 

I t  should be noted that although simple examples 
are presented here, the method applies equally well 
to both nonlinear and time-varying systems. 
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A Simple First-order-hold Circuit 

r- 7 

(Optional follower amplifier) I +I I 

Periodic period 7 - y  sampling pulses, 
Switch , 

C 

by GRANINO A. KORN 
AnaloglHybrid Computer Laboratory 

University of Arizona 

0 

The circuit shown in the figure converts a conven- 
tional sample-hold integrator into a first-order-hold 
circuit which is  very useful for extrapolation of 
sampled data from digital-to-analog converters, mul- 
tiplexers, switched-capacitor time-delay simulators, 
and iterative-analog-computer outputs. This circuit 
i s  an improvement over an earlier extrapolator de- 
scribed by L. Lofgren' in that the phase inverter i s  
a-c coupled, making it possible to use a low-cost 
unstabilized amplifier. The circuit was tested by 
Messrs. Markle and Blauvelt and found to operate 
satisfactorily. 

1. Lofgren, L., Predictors in Time-shared Analog Computer, 
Proc. I s t  A K A  Conference, Brussels, 1955. 
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DIGITAL PROGRAM CONTROL FOR ITERATIVE 
DIFFERENTIAL ANALYZERS 

by H. R. ECKES and G. A. KORN 

University of Arizona, College of Engineering 
Department of Electrical Engineering 
Analog/Hybrid Computer Laboratory 

The following was first prepared as University of Arizona ACL (Analog/Hybrid Computer Lab) 
Memo No. 86. We are indebted to the authors and to the University of Arizona 

for permission to present this original publication. 

ABSTRACT 

This report identifies the timing pulses and sequential 
digital logic needed for practical control of iterative- 
differential-analyzer programs and proposes a syste- 
matic notation. Against this background, the design 
of a very flexible and convenient digital control unit 
developed for the University of Arizona‘s new 
ASTRAC II, an all-solid-state machine employing 
both “fast” +70-volt amplifiers capable of iteration 
rates up to 7 Kc and “slow” +700-volt amplifiers. 
A variety of ”packaged’ iteration routines is  pro- 
duced with a minimum of digital-logic patching. 
Digital-clock circuits can, in particular, control sta- 
tistical evaluation of thousands of Monte-Carlo-type 
random-process simulations with automatic param- 
eter changes, and wi l l  also control displays or analog- 
digital linkages. 

ITERATIVE-DIFFERENTIAL-ANALYZER PROGRAMS 

An analog computer with integrator-mode and pro- 
gram switches operable by  sequence-controlling 
timers, analog comparators, and/or digital logic will 
be called an iterative differential analyzer.* Such 
m~chines can ~~lmmat ica l ly  perform successive ana- 
log-computer runs utilizing stored results of earlier 
runs and can, therefore,. implement iterative compu- 
tations converging to a desired solution. The auto- 
matic programming features have many other appli- 
cations as well. 

*This term was, to the best of our knowledge, first suggested by 
Dr. M. Cilliland in Ref. 1 and appears to be in general use. The 
corresponding initials IDA, however, are a registered trademark 
of Beckman Instruments, tnc., and refer to their specific product. 

Iterative differential analyzers, like digital com- 
puters, are programmed through a series of sub- 
routines. A subroutine i s  a sequence of operations, 
such as an analog-computer run or a number of- 
repetitive-analog-computer runs. We associate each 
subroutine with a digital (binary) control var- 
iable Ui representing the state of a control relay or 
flip-flop. The subroutine proceeds when Ui = 1 ; 
Ui = 0 “resets” the computing elements involved in 
the subroutine (e.g., integrators, counters) for re- 
newed use. Note that the complementary control 
variable Ui (0 for Ui = 1,l for Ui = 0) may also define 
a subroutine. Subroutines may be ”nested,” ;.e., they 
may involve component subroutines. 

Typical analog-subroutine changes are combina- 
tions of the following operations: 

1. Switching a group of integrators from RESET 
to COMPUTE, or from RESET (TRACK) to HOLD, 
and vice versa (complementary subroutines) 

2. Switching to new values of parameter or ini- 
tial-value settings (e.g., parameter optimization, 
automatic scale-factor changes) 

3. Switching interconnections to produce com- 
puter-setup changes 

Subroutines start and terminate when the corre- 
sponding binary control variables change state as 
logical functions of (1) external control (switches, re- 
lays controlled by external devices), (2) the states of 
timers or subroutine counters, and (3) analog-com- 
parator decisions. Appropriate Boolean functions and 
sequences of such control inputs can be imple- 
mented by patched digital logic. 
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YES 

f Figure 1 - Iterative-differential-analyzer system. 

The interplay of binary control variables and ana- 
log computation gives the iterative differential 
analyzer a special hybrid analog-digital structure 
(Figure 1). Because relays or electronic switches im- 
plement analog-subroutine changes under control of 
digital (binary) control variables Ui,  they constitute 
the digital-to-analog interface of our hybrid com- 
puter. Analog solutions, in turn, can modify digital 
controls. Program sequences of differential-analyzer 
operations and analog/digital decisions are nicely 
represented by flow diagrams quite similar to those 
used in digital computation (Figure 2 ) .  

- 
Figure 2 - Iterative-differential-analyzer flow chart. 
Rectangular boxes specify operations. Oval decision 
boxes refer to preset digital-timer and/or counter 
decisions, while diamond-shaped decision boxes in- 
volve analog comparators and/or comparator-actu- 
ated digital logic. 
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A REVIEW OF APPLICATIONS 
Iterative differential analyzers can implement vastly 
more sophisticated models than ordinary analog 
computers and st i l l  retain some of the intuitive 
appeal of the latter. We start our l is t  of applications 
with those most peculiarly suited to iterative analog 
computation. 

1. lterative Parameter The ma- 
chine varies parameters of a simulated system 
so as to improve performance measured in suc- 
cessive computer runs. 

2. Monte-Carlo Studies of Random Processes?~"*' 
The computer measures statistics over many 
fast-time computer runs simulating control sys- 
tems, communication, detection, or queuing 
problems with random inputs. 

3. Real-time and fast-time Simulation of Sampled- 
data Systems, including digital computer~.2*~*~ 

Repetitive analog computation at the highest pos- 
sible speed is  practically indispensable for Monte- 
Carlo studies of dynamical systems. Parameter 
optimization benefits most from high computing 
speed if we are required to track optimum-parameter 
combinations under changing conditions, as in cross- 
plotting studies or two-time-scale control. 

Other interesting applications include:* 
4. Approximate solution of partial differential 

equations. 
5. Automatic sequencing of routine computations 

for plotting families of curves, special displays, 
cross-plotting, etc. 

6. Introduction of artificial errors into alternate 
computer runs for purposes of error analysis.l0 

7. Automatic scale-factor changes. 
8. Multiplexing expensive computing elements or 

blocks of computing elements (e.g., coordinate- 
transformation circuits). 

9. Special simulation and data-processing circuits, 
e.g., patchbay-assembled time-division and 
sampling multipliers, special function gener- 
ators, delays, etc.2 

Iterative differential analyzers may also communi- 
cate with digital computers for increased accuracy 
and memory capacity. 

BLOCK-DIAGRAM NOTATION ___) 

Figure 3 introduces our block-diagram notation for 
hybrid analog-digital computer setups. Digital (bi- 
nary) variables can take the symbolic values 0 and 1, 
respectively represented by deenergized and ener- 
gized relays or digital-module outputs (typically 0 
and -6 volts). 
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Figure 4a- A simple memory pair can present a solu- 
tion sample k X ( ~ , )  during the entire following itera- 
tive-differential-analyzer run, i f  T~ > T,. Note the 
initial-reset-circuit operation: integrator 1 tracks the 

ANALOG POINT-STORAGE OPERATION - 
To store the computed value Xhl)  of an analog- 
computer voltage X ( T )  (point-storage), we track X(T).' 
or - X ( T )  with a track-hold circuit and switch into 
HOLD at the computer time T = T~ = q t , .  If the time 
derivative PX = dX/& is available in our computer 
setup, we can also store X(T,) by switching an inte- 
grator with input - PX into HOLD. 
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R 

5 

- 
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' Figure 4 illustrates memory-pair operation for in- 
formation transfer between successive analog-com- 
puter runs. In Figure 4a, the TRACK pulses S'= R 
for track-hold 2 are delayed so that amplifier 2 tracks 
the HOLD output of amplifier 1 during the computer 
RESET period and then holds or presents the stored 
voltage during the entire subsequent COMPUTE 
period. Amplifier 1, in the meantime, is  free to track 
again. Unfortunately, this scheme breaks down 
whenever the sampling time 71 i s  shorter than the 
period T,  required for tracking, for now amplifier 2 
is  already in HOLD at the time T =  -rl (Figure 4b). 

There are two ways out: 

1. We can interpose a third track-hold circuit be- 
tween track-holds l and 2 to re-sample the 
voltage Y a t  a more convenient time T~ > T, 
(Figure 4b). 

2. We can use a longer computer RESET period 
(at least equal to 2T,) and switch amplifier 2 
into HOLD 1, seconds after the start of the 
RESET period ("three-period control," Figure 
4c). 

Both techniques necessarily complicate our con- 
trol circuits. Three-period control permits flexible 
operation of three-state integrators, but tends to 
waste possibly valuable computing time. 

Frequently, a stored voltage X(-rl) is required only 
during the subsequent RESET period, e.g., for setting 
initial values or for performing an intermediate sub- 
routine. In this case, a single track-hold circuit suf- 
fices for storage if 7 ,  > T,  (Figure 4a). 

THE INITIAL RESET MODE 

In many applications, the memory-pair output Z in 
Figure 4a must assume a specified initial value "X 
during the first COMPUTE period. This is  achieved 
by the initial-reset circuit shown in Figure 4a. The 
INITIAL RESET mode established by R ' = 1  implies 
R = 1, S = 0; Sw, closes, and the memory output Z 
assumes the correct initial value Z=  OX. To start the 
computation, we switch to R'= R = 0 and let R and 
5 cycle normally. 

Figures 4b, c-For T~ < T,, the simple memory scheme 
of Figure 4a breaks down, since the S and R pulses 
overlap. To present X ( T ~ )  during the following com- 
puter run, we can use either an extra track-hold cir- 
cuit with delayed sampling (b), or we can employ 
three-period control (c). 
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Figure Sa.-A simplified block diagram of the ASTRAC I I  digital iterative-differential-analyzer control unit. 

DESIGN OF A DIGITAL CONTROL UNIT 

Requirements 

The simplest type of iterative-differential-analyzer 
control involves merely a source of repetitive RESET 
pulses, such as a simple astable multivibrator. All 
other subroutine control operations can, in principle, 
be relegated to patched digital logic. 

In our judgment, though, oversimplified control 
circuits constitute a false economy. First, accurate 
repetitive computation requires stable timing to pre- 
vent synchronization of the repetition rate with the 
power-line frequency. Such synchronization tends to 
cause systematic errors, even though i t  makes oscil- 
loscope displays in cheap computers look "clean," 
;.e., free from line-frequency jitter. Timing pulses 
are best obtained from a simple crystal-controlled 
digital clock, which will also pay for itself as a source 
of reliable timing pulses for memory control, digital 
logic, oscilloscope displays, etc. 

The adition of simple logic circuits to the basic 
digital clock can, next, produce the most frequently 
useful subroutine sequences with little or no digital- 
circuit patching. This opens the iterative technique 
to a much wider class of operators, for detailed iter- 
ative-subroutine design is far from easy for most 
analog-computer users. With a neat compromise 
between control-unit sophistication and complexity, 
important "packaged" subroutines can be selected 
by switching. Less frequently employed subroutine 
sequences can, of course, still be patched on a dig- 
ital patchbay or pinboard adjacent to our digital 
control unit. 

Figure 5a illustrates the design of a very flexible 
i tera t ive-d if feren t ia I-ana I yzer con t ro I unit bu i I t from 
commercially available logic cards. Control functions 
are divided among a master timer and an auxiliary 
timer built with 5-Mc logic modules to minimize 
timing errors and a subroutine counter or counters 
using inexpensive 200-Kc logic. Modular design per- 



mits us to start with the master timer and to add 
. other functions as needed. 

Basic Clock and Sample Timer 
Referring to Figure Sa, we begin with a 4-Mc crystal 

clock and count down to obtain timing pulses for 
various control and display purposes. 4-Mc, 2-Mc, 
I-Mc, and 500-Kc clock pulses are always available, 
and the repetition-rate selector Sw, selects clock 
pulses CP at exactly 1,000 times the desired com- 
puter repetition rate f, = 1/T, = 1,000, 500, 250, 
100, 50, 25, or 10 computer runs per second. All 
further timing i s  performed in terms of these CP 
pulses (1,000 per computer run), so that the repeti- 
tion-rate selector automatically changes the time 
scale of al l  timing and counting operations. If de- 
sired, the repetition-rate selector can also change 
integrator capacitors through relays to provide com- 
pletely automatic time-scale changes. 

The master timing counter C, fed by SW, is a 
three-decade dual-preset decimal counter designed 
to perform the following timing functions: 

1. I t  counts down by 1,000 to mark the start of 
periodic COMPUTE periods (7 = 0, Figure 5b). 

2. I t  produces timing markers at 10 times and 100 
times the computer repetition rate (e.g., for 
oscilloscope displays). 

3. Thumbwheel decade switches select preset- 
counter outputs T = T and T = T~ seconds after 
the start of each COMPUTE period in steps of 
T,/1,000 seconds (Figure 5b). 

In normal repetitive operation (Figure 5b) flip- 
flop F F I  i s  reset at T = 0 and set at T = T to produce 
periodic computer RESET pulses R, so that COMPUTE 
periods of length T alternate with RESET periods of 
length T, - T .  Note that we can independently select 
T, = l/f,< and T .  The preset output at 7, feeds a two- 
flip-flop timing-logic block to produce periodic 
track-hold control pulses 5, and delayed pulses SI, 
of length T,  = T,/10. A track-hold circuit controlled 
by S, will periodically track for T, seconds and switch 
into HOLD at 7 = 7,. S,, switches T,  seconds later 
than 5, for memory-triplet operation (Figure 4c). 

All timing pulses, reset pulses, and track-hold con- 
trol pulses are available in a small control-variable 
patchbay for flexible control of individual integrators 
and switches (Figure 6). In normal repetitive-com- 
puter operation, integrators are controlled by R, and 
a track-hold circuit is controlled by 5, for digital 
readout of solution values X ( T , )  at the accurately 
preset computer time 7,. Different patching connec- 
tions can employ R,  S,, and SI, to produce flexible 
memory control, including three-period control. 

The patchable COUNTER RESET input to C, resets 
I the counter to 0.9T, and permits finer control of the 
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- - -  

- - -  

- - -  

- - -  
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\' ' , 
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Read-out select OFF RUN 

Figure 6-ASTRAC II control  panel 
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computer-run period than i s  possible by repetition- 
rate selection. We can, for instance, use s, to reset 
the counter at T =  7,; this will reset integrators for 
0.1 T, = T,9 seconds and then start a new COMPUTE 
period of duration 7,. Many other possibilities exist; 
it is, in particular, possible to control the lengths of 
individual computer runs with patched comparator 
logic to conserve time in long computations. 

Auxiliary Timer and Scan Readout 
The auxiliary timing counter C, in Figure 5a is 

another three-decade preset counter. With its asso- 
ciated logic circuits, C, adds the following functions 
to the basic clock: 

1. With switch Sw, in the “7,” position, C, pro- 
duces a preset output 7, seconds after the start 
of each COMPUTE period. Logic circuits yield 
track-hold control pulses S, and S,, analogous 
to SI and SI,). 

2. With Sw, in the “ T ~ ”  position, C, i s  reset per- 
iodically a t  T = 7,. The timing pulses switching 
S, to 0 (HOLD) occur at T =  T~ + T ~ ,  with 
thumbwheel-preset on C, and C,. This pro- 
duces, in particular, sample pairs X(T,) ,  Y(T+T,) 
for correlation and prediction studies. 

3. With Sw, in the “1” position, C, i s  reset at 
T = T ,  and S,, S,,, serve for readout during the 
RESET period just as S,, SI, serve during the 
COMPUTE period. This i s  useful for “alternat- 
ing” differential-analyzer runs using integrator 
groups controlled by R and R and also permits 
flexible three-period control. 

4. With Sw, in the ”SCAN 1” position, C, recycles 
after 1,001 input pulses. With C, and C, initially 
reset to 0.9 T,( and zero, and C, preset to JR/ 
1,000 sec, S, will read out at  T~ = T,/1,000 sec 
during the f irst computer run, at 7, = 2TR/1,000 
sec during the second computer run, etc. (Fig- 
ure 5c). Track-hold circuits controlled by s, 
and S,,, wi l l  then “scan” periodic repetitive- 
computer solutions once every 7,000 computer 
runs for readout into slow recorders, printers, 
or digital computers. With f,= 100 cps, for 
instance, a complete scan requires 10 seconds. 

5. With Sw, in the “SCAN 2“ position, the sub- 
routine counter permits the scan to step for- 
ward only after a preset number N of computer 
runs or other events. 

6. With Sw., in the ”REVERSE SCAN” position, C, 
resets after between 500 and 1,000 input pulses. 
Wtih C, and C, initially reset to zero and C, 
preset to mT,,/1,000 sec, T~ starts at that time 
and scans backwards in steps of (1 - m/1,000) 
1, sec per computer run. 

The SCAN modes are useful for slow recording of 
repetitive solutions ( X  vs. or Y vs. X ) ,  but also for 
automatic parameter changing (new values of a re- 
petitive solution X ( 7 )  are used in successive computer 
runs), for multiple-solution oscilloscope displays, and 
for solution checks with slow computers. The “RE- 
VERSE SCAN’’ mode, with its wide choice of scanning 
rates, is  useful for computing convolution integrals, 
for backward integration (e.g., in boundary-value 
problems), for modified-adjoint-system techniques, 
and for con tro I I i ng de I ay- I i n e-m emory read/w r i te 
cycles. The “SCAN 2“ mode is  intended for auto- 
matic computation of statistics over n computer runs. 

Subroutine Counter and Repeat Switch 
Referring again to Figure Sa, the subroutine 

counter C,, another dual-preset %decade counter, is  
patched to count computer runs, comparator-output 
steps, or other events. C, produces output pulses 
every I O ,  100, 1,000, and 10,000 events, as well as 
preset -counter  ou tpu ts  af ter  n and N events 
(n, N < 20,000). These counter outputs are used to 
terminate and/or start subroutine sequences. In par- 
ticular, the REPEAT switch Sw, permits us to reset 
C, to zero after N events and to recycle the sequence. 

Starting, Two-Time-Scale Operation, 
and External Control 

Before computation, we depress the lNlJlAL RESET 
button momentarily or hold the start button down 
(Figure Sa) to produce the following conditions: 

1. The subroutine counter C, is reset to zero and 
establishes the INTIAL RESET mode (R’= 0).  

2. The main timing counter C, is reset to J, - T, 
=0.91,; flip-flops F F I  to FF4 are set or reset 
to produce R = 1 and correct initial values of 
the control variables S,, SI,,, S,, and S,,,. C, are 
reset to zero, except in the “T,,” mode, where 
i t  i s  reset to T,/1,000. 

3. In any SCAN mode, counter C, is reset to zero. 
I t  follows that all integrators, memory pairs, and 

statistical averaging devices controlled by R and R’ 
are now reset to suitable initial conditions, ready for 
computation. 

This state is  maintained until we release (or depress 
and release), the START button momentarily. Then 
C, runs through 100 CP pulses (7, seconds) and then 
starts the first COMPUTE period (see also Figure 4a). 
To produce ”nested” iterative subroutines, the RE- 
PEAT switch Sw, reestablishes the INITIAL RESET 
mode (R’ = 1) after a preset number n of subroutine- 
counter input pulses, and resets the subroutine 
counter after N > n pulses to repeat the cycle (Figure 
5b). In particular, we can reset fast integrators with R 
and slow integrators with R’ (two-time-scale opera- 
tion). 

* 



I. . - 
I f  the SiNCLE-RUN switch Sw, is  closed, then the 

SINGLE-RUN button produces a single computer run 
(R  = 0) without resetting C,, C,, or C,, so that we can 
check the progress of iterative subroutines, computer 
run by computer run. The various resetting, sampling, 
and starting operations can also be ordered electron- 
ically by external command pulses into appropriate 
lines. 

- 

Physical Construction 
Computer Control Company, Inc. S-PAC NAND 

logic and gated flip-flops are used throughout the 
digital control unit. Wire-wrap connections to the 
control unit and to the digital control patchbay 
(VECTOR PPB 600A) simplify construction and sim- 
plify circuit changes. 

The basic clock uses 5-Mc logic and consists of 
a 4-Mc crystal-controlled oscillator, two flip-flops, 
and two decade counters, producing 4 Mc, 2 Mc, and 
1,000 f, waveforms. The 4-Mc signal also serves as 
the clock for a Hybrid Analog-Digital Random-Noise 
Generator.’* The 2-Mc signal is  the clock for a hybrid 
analog-digital delay ~ y s t e m . ’ ~ . ~ ~  The remaining sig- 
nals trigger C, and C, logic. 

C, and C, counters and their logic circuits also use 
5-Mc logic to keep the ripple-through timing error 
well below 1 p e c ,  allowing the output flip-flops 
to be clocked by 1000 f ,  5 1 Mc. Clocking eliminates 
timing errors in the outputs of the control unit. 

C, counters use inexpensive 200-Kc logic, because 
the fastest input signal is f ,  2 1 Kc. The output logic 
is  clocked by the input to C, to eliminate timing 
errors. 

All outputs of the control unit are isolated by 
power amplifiers before being brought out to the 
digital control patchbay. 

The complete logic diagram for the control unit is 
available on request to the authors. 
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